Сайт Романа ПарпалакаБлог20120121

* Чурофметика

Слушатели Эха Москвы помнят недавнее интервью Чурова, в котором он опровергает математику:

Чуров совершенно правильно назвал свою аналогию с конфетками наперсточничеством. Я собираюсь показать это, предложив адекватную аналогию.

Статистический анализ результатов выборов никакого отношения к нескольким конфеткам не имеет. Чтобы правильно показать его суть, нужно представить следующую ситуацию. Кто-то услышал гипотезу, по которой среди конфет эм-энд-эмс коричневые встречаются чаще. Он заподозрил известную торговую сеть в том, что они нагло вскрывают упаковки и досыпают коричневые конфеты, произведенные где-то в подвалах.

Наш герой отправляется в каждый магазин известной торговой сети и покупает несколько упаковок эм-энд-эмс. Перед тем как съесть очередную упаковку, он аккуратно записывает, сколько конфет каждого цвета в ней было. Герой объехал всю страну и начал анализировать числа.

Известно, что в одну упаковку в силу ограниченности объема можно поместить не больше 100 конфет. Но так как конфеты до упора никто не набивает, разумно ожидать, что в среднем (где-то больше, где-то меньше) в упаковках будет, скажем, 45 конфет. Для начала наш герой строит гистограмму, где по горизонтальной оси отложено общее количество конфет в упаковке, а по вертикальной — число встретившихся упаковок с данным количеством конфет. Он ожидает увидеть более-менее симметричную колоколообразную кривую с максимумом на 45 конфетах (более того, подобное исследование у конкурентов известной торговой сети показало именно такой результат).

Как же удивляется исследователь, обнаружив нечто совершенно неожиданное!

Здесь примечательны три вещи. Во-первых, кривая несимметрична: много упаковок с завышенным количеством конфет. Во-вторых, имеется большой пик в районе 100 конфет. В-третьих, встречаются небольшие пики в районе 80 и 90 конфет, которые можно объяснить только любовью фальсификаторов, подсыпающих конфеты, к круглым числам.

Тогда исследователь строит гистограммы, откладывая по вертикали не число упаковок, а уже общее число конфет разных цветов в упаковках с данным количеством конфет.

Оказывается, что безобразие действительно происходит только с коричневыми конфетами. Кривые для остальных конфет выглядят нормально и переходят друг в друга при растяжении или сжатии по вертикали. Их симметрия говорит о том, что конфеты ярких цветов в результате фальсификаций не изымаются. Таким образом, фальсификации заключаются только в преимущественном добавлении коричневых конфет.

Однако эти кривые позволяют сделать большее — сказать, сколько коричневых конфет было в упаковках до вброса! Так как левая половина коричневой кривой напоминает остальные, распределение которых не отличается от заводского, то можно растянуть красную кривую, чтобы левые половины красной и коричневой кривой совпали, и заменить искаженную правую часть.

«Это прекрасно, но какое отношение имеют все эти конфеты к выборам и причем здесь Чуров?» — спросит нетерпеливый читатель. Если заменить конфеты разных цветов на проценты за ту или иную партию, а упаковки эм-энд-эмсов на избирательные участки, то наше конфетное расследование превратится в описание фальсификаций на выборах.

Подобный анализ проводился для выборов 2007 — 2009 годов и для последних думских выборов (идея несколько подробнее описана в первом материале). Анализ показывает, например, что на последних выборах Единая Россия получила не 49%, а 34%.

Вот такие, господин Чуров, конфетки!

21 января 2012 года, 17:29     политика · математика · видео     Комментарии (6)
Поделиться
Записи